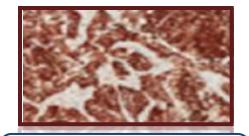

Selection of 1st line therapy in ALK+ mNSCLC: 1st or 2nd Gen TKL

Dr Naresh Somani MD, DM

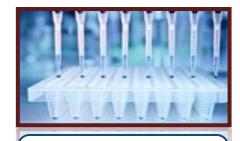
Director Oncology &

HOD Medical Oncology

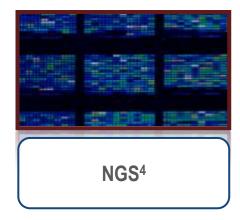
HCG cancer Centre & Somani Hospital, Jaipur


Molecular technologies

Tests performed on primary or metastatic tumor tissue, pleural fluid, or cytologic FFPE samples


FISH¹

Fluorescent probes label and detect specific regions on a gene


IHC²

Antibodies detect specific proteins expressed by cells

RT-PCR³

Many copies of DNA produced from minute quantities of RNA source material

High-throughput sequencing using massively parallel sequencing technology

FFPE, formalin-fixed paraffin-embedded; FISH, fluorescence *in situ* hybridization; NGS, next-generation sequencing; RT-PCR, reverse transcription polymerase chain reaction

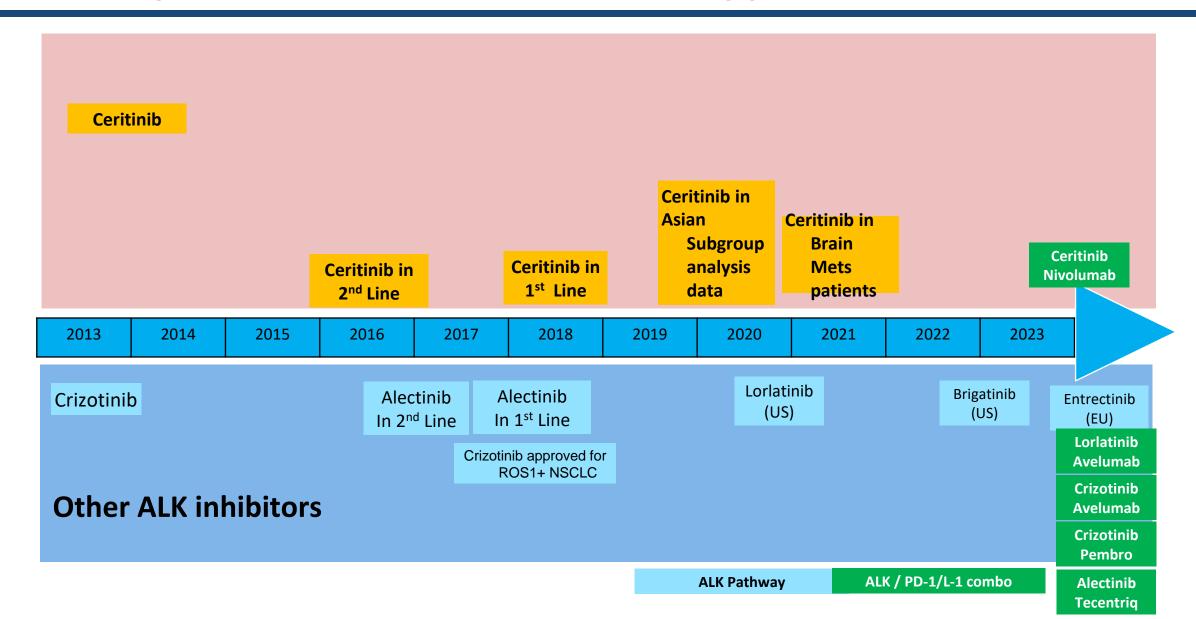
^{1.} Vincent MD *et al. Curr Oncol* 2012;19:S33—S44; 2. Ramos-Vara JA. *Vet Pathol* 2005;42:405–426; 3. Peake I. *J Clin Pathol* 1989;42:673–676;

First line treatment of ALK rearranged NSCLC: spoilt for choices

Crizotinib

Ceretinib

Alectinib

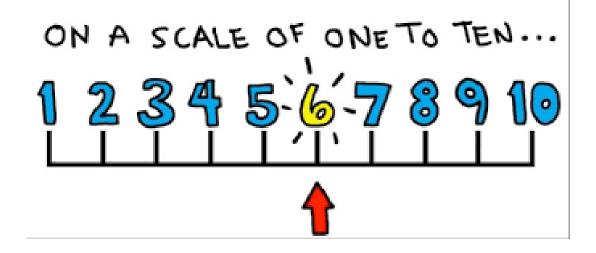

Brigatinib

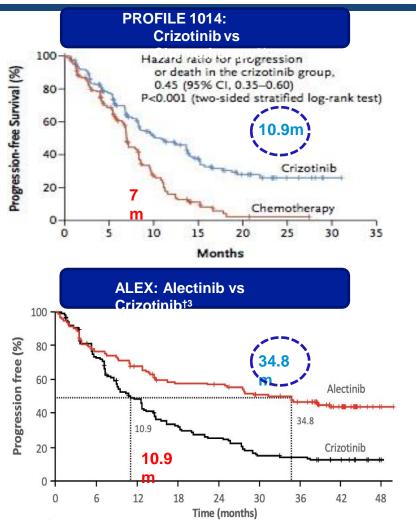
Ensartenib

Lorlatinib

Landscape: Advanced ALK+ NSCLC approvals

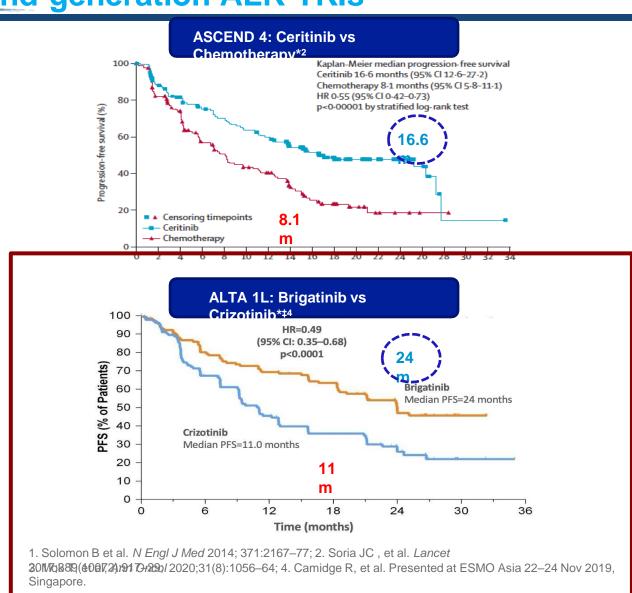
How do you decide??


- Progression free survival/overall survival
- CNS efficacy
- Toxicity profile
- Long term efficacy data
- Second line strategies
- Availability
- Cost cost cost.....

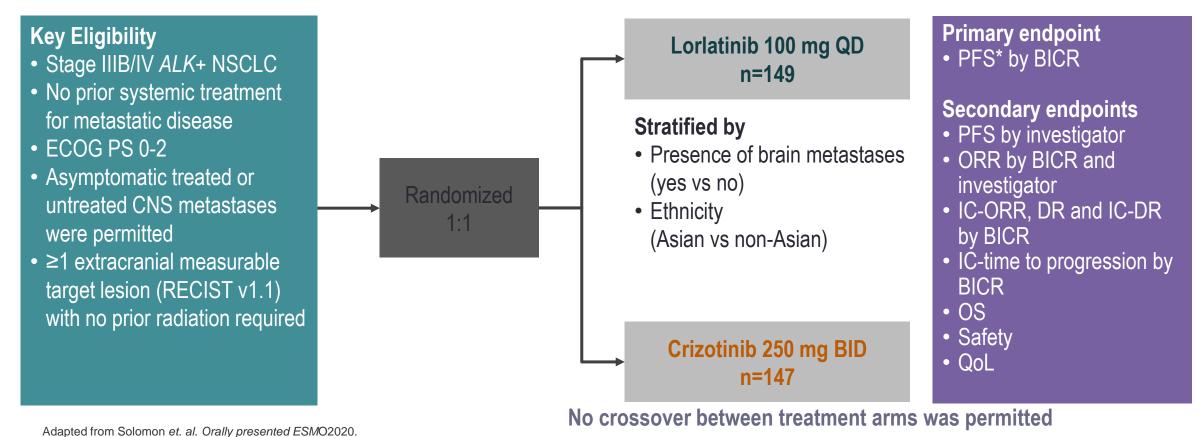


Rate them on a scale of 10....

- Progression free survival/overall survival
- CNS efficacy
- Toxicity profile
- Long term efficacy data
- Second line strategies
- Availability
- Cost cost cost.....



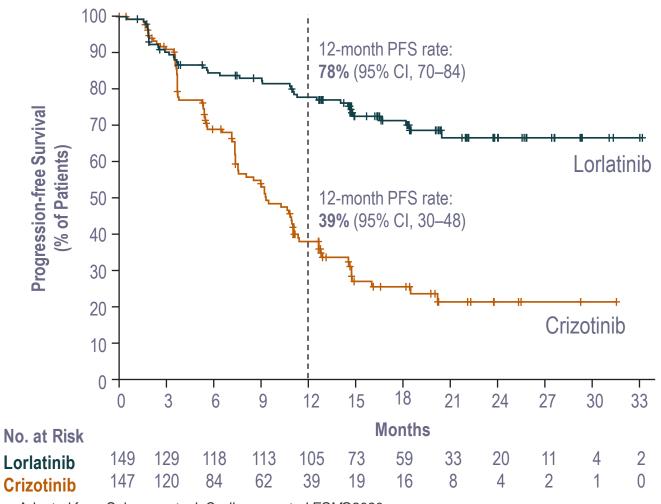
Randomised trials with first- and second-generation ALK-TKIs


^{*}PFS assessed by independent review committee; †PFS assessed by investigator.

Slides/ Spexib/Oncology BU/ 25534/13/02/2020

[‡]Brigatinib is currently not approved for use as a first line treatment option for ALK+ NSCLC in India.

CROWN Study Design


Adapted from Solomon et. al. Orally presented ESIMO2020

*Defined as the time from randomization to RECIST-defined progression or death due to any cause.

BICR, blinded independent central review; DR, duration of response; ECOG PS, Eastern Cooperative Oncology Group performance status; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; QoL, quality of life; RECIST, Response Evaluation Criteria in Solid Tumors.

ClinicalTrials.gov number, NCT03052608

Primary Endpoint: PFS by BICR

	Lorlatinib (n=149)	Crizotinib (n=147)	
Patients with event, n (%)	41 (28)	86 (59)	
Median PFS, months (95% CI)	NE (NE–NE)	9.3 (7.6-11.1)	
HR (95% CI) 1-sided P value*	0.28 (0.19-0.41) < 0.001		

*By stratified log-rank test.

Adapted from Solomon et. al. Orally presented ESMO2020.

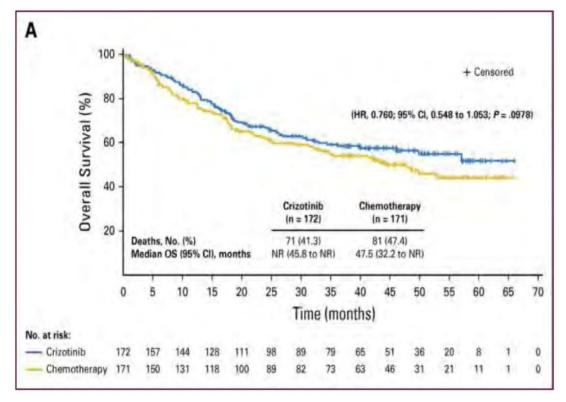

BICR, blinded independent central review; CI, confidence interval; HR, hazard ratio; NE, not estimable; PFS, progression-free survival

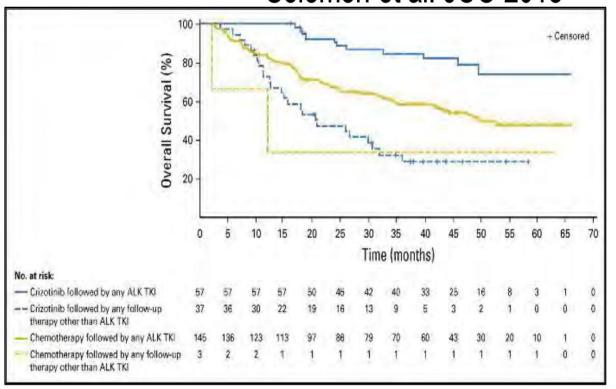
Comparison of First-Line ALK TKI Studies

ALK TKI	Comparator Arm	# of patients	ORR (%) *Investigator Assessed	Median PFS	Intracranial ORR (%)	CNS CR Rate
Ceritinib ASCEND-4	Chemo	376	72.5 vs 26.7	16.6 vs 8.1	72.7 vs 27.3	
Alectinib ALEX	Crizotinib	303	*82.9 vs 75.5	25.7 vs 10.4 (HR 0.50)	81 vs 50	38%
Brigatinib ALTA-1L	Crizotinib	275	74 vs 62	24.0 vs 11.0 (HR 0.49)	78 vs 26	11%
Ensartinib exALT	Crizotinib	290	75 vs 67	25.8 vs 12.7 (HR 0.51)	64 vs 21	
Lorlatinib CROWN	Crizotinib	296	76 vs 58	NR vs 9.3 (HR 0.28)	82 vs 23	71%

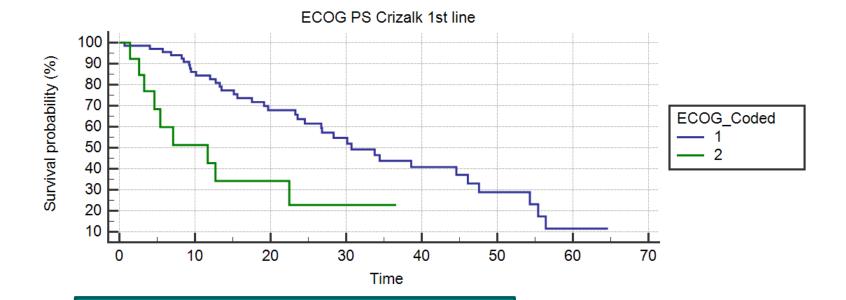
Slidae/ Snavih/Oncology RII/ 25521/12/02/2020

Lets discuss the pros and cons of all the available drugs....


Pros and Cons of Crizotinib


- PROs
- -the first mover advantage
- - relatively cost effective
- Good clinical experience
- -PFS 10-12 months
- Toxicity profile- easy to manage

• CONS


- PFS is only 10-12 months
- Doesn't cross Blood brain barrier
- 10 months of crizalk- 6-8 months of 2ng gen TKIs- 6 month of 3rd gen TKIs- overall OS in RWE- 30-32 months
- Hepatotoxicity could be a concern

Final Overall Survival Analysis from PROFILE 1014 Solomon et al. JCO 2018

- Survival probability at 4 yrs = 56.6% (95% CI 48.3, 64.1) for crizotinib, median OS NR (45.8,NR)
- Median OS was longest (NR) in 57 patients who received crizotinib then another ALK TKI
- Median OS was 20.8 months in 37 patients who received crizotinib then treatment other than an ALK TKI
- No prospective, randomised data to support sequential crizotinib followed by a next generation ALKi versus a next generation ALKi alone

Median OS for 1st line Crizotinib ECOG PS

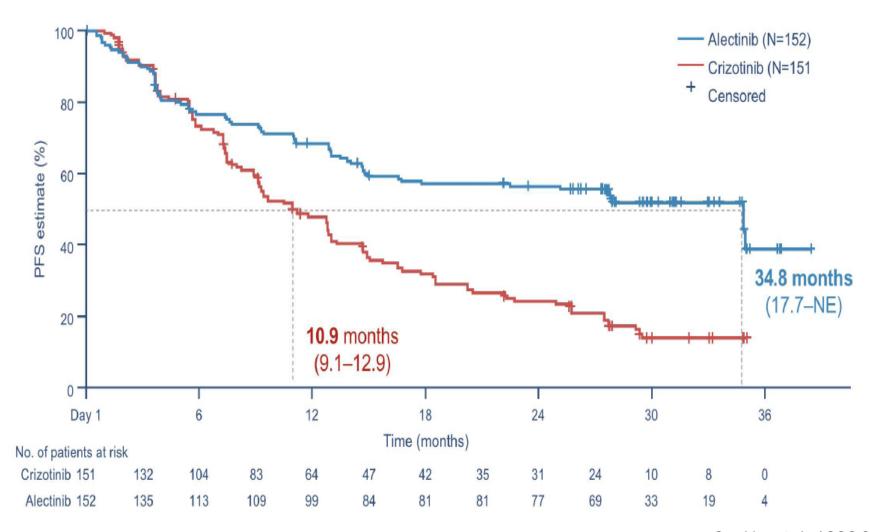
ECOG 0-2: 30.8months ECOG 3-4: 11.8months

P value:0.001

Pros and Cons of Ceretinib

- PROs
 - PFS- 16.6 months
 - Has reasonable BBB activity
 - Cost effective in Indian scenario

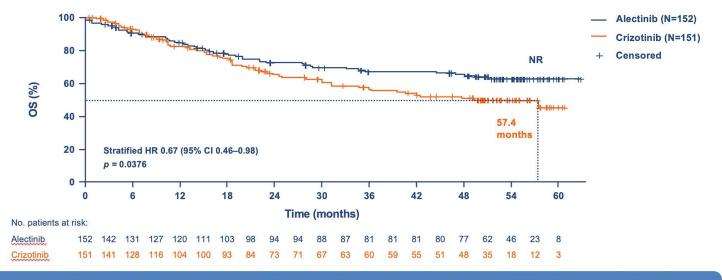
• CONS


- -No head to head data with Crizalk
- -Toxicity profile
 - Hyperglycemia, nausea, vomiting, Hyperamylasemia
- What after Ceretinib?
 - -3rd Gen TKIs- 6 months- chemo- BSC

Pros and Cons of Alectinib...

- PROS
- Impressive PFS
- Impressive Os
- Favorable toxicity profile
- Crosses BBB

- CONS
 - The ideal dosage
 - J ALEX vs ALEX
 - What if CROWN surpasses ALEX!!!!


Alectinib is Superior to Crizotinib as First-Line Therapy: Updated Results of Global ALEX

9518

ALEX – updated OS

(median follow-up 48.2 mo)

OS data remain immature, with 37% of events recorded (stratified HR 0.67, 95% CI 0.46-0.98)

Median OS was not reached with alectinib vs 57.4 months with crizotinib (95% CI 34.6-NR)

NR, not reached

PRESENTED AT: 2020 ASCO

#ASCO20 Slides are the property of the author, permission required for reuse.

PRESENTED BY: Ryan Gentzler, MD, MS

Pros and Cons of Lorlatinib

- PROS
- - Impressive HR for PFS
- Impressive HR for OS
- Crosses BBB
- Latest AACR data is mouth watering

- CONS
- Unfavorable toxicity profile
- What after Lorlatinib
- Final Data remains to be seen

Abstract #CT223

Updated Efficacy and Safety From the Phase 3 CROWN Study of First-Line Lorlatinib vs Crizotinib in Advanced Anaplastic Lymphoma Kinase (ALK)-Positive Non-Small Cell Lung Cancer (NSCLC)

Conclusions

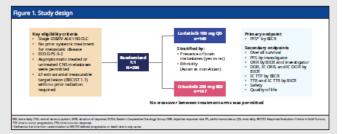
- · With approximately 18 months of additional follow-up since the interim analysis of the phase 3 CROWN study, lorlatinib continued to show superior overall and intracranial (IC) efficacy compared with crizotinib in patients with ALK-positive NSCLC
- -Progression-free survival (PFS) by blinded independent central review (BICR) remained longer with Iorlatinib than crizotinib; 3-year PFS was 63.5% with Iorlatinib and 18.9% with crizotinib
- -Time to IC progression was longer with lorlatinib than crizotinib
- •These efficacy benefits with loriatinib compared with crizotinib were observed not only in patients with baseline brain metastases but also in patients without baseline brain metastases
- -In patients without baseline brain metastases, only 1 of 112 patients had evidence of IC progression, suggesting a protective effect against development of brain metastases on lorlatinib treatment
- · No new safety signals were observed with longer follow-up
- *These updated long-term data from CROWN confirm the efficacy of Iorlatinib over crizotinib in patients with treatment-naive ALK-positive NSCLC and support the use of Iorlatinib in these patients with and without baseline brain metastases

Presented at the AACR Annual Meeting 2022, April 8-13, 2022; New Orleans, Louisiana, USA.

Benjamin J. Solomon,1 Todd Bauer,2 Tony Mok,3 Geoffrey Liu,4 Julien Mazieres,5 Filippo de Marinis, 6 Yasushi Goto, 7 Dong-Wan Kim, 8 Yi-Long Wu, 9 Mikhail Dvorkin, 10 Jacek Jassem, 11 Froylán López-López, 12 Ross Soo, 13 Anna Polli, 14 Elisa Dall'O', 14 Laura Iadeluca, 15 Francesca Toffalorio, 14 Enriqueta Felip 16

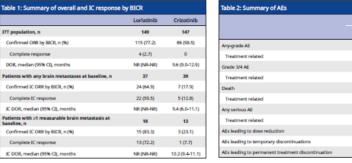
Background

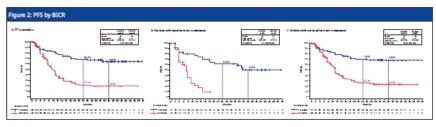
- . Lorlatinib, a third-generation ALK inhibitor designed to cross the blood-brain barrier, offers higher potency and greater coverage of ALK resistance mutations than secondgeneration ALK inhibitors1
- * In the planned interim analysis of the phase 3 CROWN study (NCT03052608), Ioriatinib improved PFS and demonstrated IC activity in patients with untreated ALK-positive NSCLC²
- -At 18.3 months of median follow-up in the ioriatinib arm, median PFS was not reached (NR; 95% CI, NR-NR) with loriatinib and was 9.3 months (95% CL 7.6-11.1 months) with crizotinib (hazard ratio [HR], 0.28: 95% CI, 0.19-0.41:
- In patients with measurable baseline brain metastases the frequency of confirmed IC response was greater with Ioriatinib (82%) than crizotinib (23%)

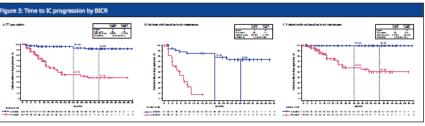

- * Based on the results of this study, the US Food and Drug Administration and regulatory authorities in Japan and Europe expanded ioriatinib approval to include first-line reatment in patients with metastatic NSCLC whose tumors
- We report updated efficacy and safety data from the CROWN study after approximately 3 years of follow-up

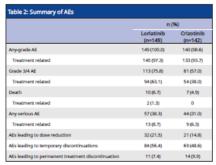
Methods

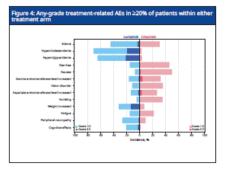
are ALK positive34

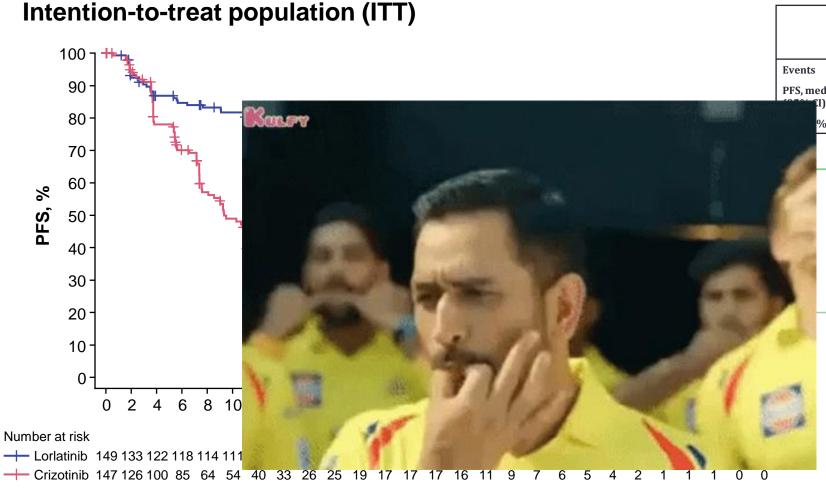

*The CROWN study is an ongoing, international, randomized phase 3 trial comparing loriatinib with crizotinib in patients with previously untreated ALK-positive NSCLC (Figure 1)


**Place MocCallam Carror Centra Melbourne MC, Australia **Earth Centron Research Institute/Tencessee Chroslogy, PLC, Nacholitis, The State Say Labouston, of South China, Christee University of Hospital Season, OK, Centralia **Bullouses University Hospital, States Say Centre Hospital, States Chrosley Season, Chr




Results (Data Cutoff: September 20, 2021)


- Between May 2017 and February 2019, a total of 296 patients were randomly assigned to receive loriatinib (n=149) or crizotinib (n=147)
- Median duration of treatment was 33.3 months with ioriatinib and 9.6 months
- Median duration of follow-up for PFS by BICR was 36.7 months with ioriatinib and 29.3 months with crizotinib
- Median PFS by BICR was NR (95% CL NR-NR) with ioriatinib and 9.3 months (95%) CI, 7.6-11.1 months) with crizotinib (HR, 0.27; 95% CI, 0.184-0.388; Figure 2A)
- PFS as assessed by the investigators was also longer with ioriatinib than crizotinib -Median PFS was NR (95% CI, NR-NR) with Ioriatinib and 9.1 months (95% CL 7.4-10.9 months) with crizotinib (HR, 0.19; 95% CL 0.131-0.274)
- PFS benefit with ioriatinib compared with crizotinib was also observed in patients with (Figure 2B) and without baseline brain metastases (Figure 2C)
- *Time to IC progression by BICR was longer with loriatinib than crizotinib in the intention-to-treat (ITT) population (Figure 3A) as well as in patients with (Figure 3B) and without baseline brain metastases (Figure 3C)
- -8 of 37 patients with baseline brain metastases and only 1 of 112 patients without baseline brain metastases had IC progression with loriatinib treatment
- In patients with measurable baseline brain metastases, confirmed IC ORR by BICR was 83.3% with loriatinib and 23.1% with crizotinib (Table 1)
- -72.2% and 7.7%, respectively, had a complete IC response With longer follow-up, no new safety signals have emerged
- Grade 3/4 all-causality adverse events (AEs) occurred in 75.8% of patients in the Ioriatinib arm and 57.0% in the crizotinib arm (Table 2)
- -The incidence of grade 3/4 AEs in the ioriatinib arm was largely due to frequent occurrence of altered lipid levels such as hypercho hypertriglyceridemia (Figure 4)
- Cognitive effects occurred in 20.8% of patients in the ioriatinib arm; however, most (27 of 31) cognitive effects were grade 1/2 and no grade 4 event was observed
- AEs leading to permanent treatment discontinuation were reported in 7.4% of patients in the loriatinib arm and 9.9% in the crizotinib arm



At 36.7 months of median follow-up in the Iorlatinib arm, BICR assessed PFS remained longer with Iorlatinib than with crizotinib

	ITT		
	Lorlatinib (n=149)	Crizotinib (n=147)	
Events	49	92	
PFS, median	NR (NR-NR)	9.3 (7.6–11.1)	
% CI)	0.27 (0.184–0.388)		

- Confirmed ORR by BICR
 - 77.2% (Iorlatinib) vs 58.5% (crizotinib)
- Median DOR, months
 - NR (Iorlatinib) vs 9.6 months (crizotinib)

CROWN: Subgroup analysis of PFS by BICR

		of Patients,		er of Events/ of Patients (N)		
Subgroup	Lorlatinib	Crizotinib	Lorlatinib	Crizotinib		1-sided 2-sided Hazard Ratio (95% CI) p-value p-value
All patients (stratified)	149 (100.0)	147 (100.0)	49/149	92/147		0.27 (0.184, 0.388) < .0001 < .0001
All patients (unstratified)	149 (100.0)	147 (100.0)	49/149	92/147		0.28 (0.195, 0.401) <.0001 <.0001
Presence of Brain Metastase	es					
Yes	37 (24.8)	39 (26.5)	16/37	27/39		0.21 (0.099, 0.436) <.0001 <.0001
No	112 (75.2)	108 (73.5)	33/112	65/108		0.29 (0.188, 0.442) < .0001 < .0001
Ethnic Origin						
Asian	66 (44.3)	65 (44.2)	25/66	33/65		0.44 (0.259, 0.754) 0.0011 0.0022
Non-Asian	83 (55.7)	82 (55.8)	24/83	59/82		0.20 (0.121, 0.324) < .0001 < .0001
ECOG Performance Status						
0/1	146 (98.0)	138 (93.9)	47/146	84/138	 -	0.28 (0.194, 0.407) < .0001 < .0001
Gender						
Male	65 (43.6)	56 (38.1)	23/65	37/56		0.29 (0.169, 0.498) <.0001 <.0001
Female	84 (56.4)	91 (61.9)	26/84	55/91		0.27 (0.169, 0.441) < .0001 < .0001
Age						
< 65 Years	90 (60.4)	103 (70.1)	24/90	63/103		0.23 (0.141, 0.371) < .0001 < .0001
≥65 Years	59 (39.6)	44 (29.9)	25/59	29/44		0.31 (0.174, 0.545) < .0001 < .0001
Smoking Status						
Never	81 (54.4)	94 (63.9)	25/81	60/94		0.24 (0.146, 0.385) < .0001 < .0001
Current/Former	68 (45.6)	52 (35.4)	24/68	31/52		0.36 (0.207, 0.621) < .0001 0.0001
Extent of Disease						
Metastatic	135 (90.6)	139 (94.6)	44/135	89/139		0.26 (0.179, 0.379) < .0001 < .0001
Histology						
Adenocarcinoma	140 (94.0)	140 (95.2)	43/140	87/140		0.26 (0.178, 0.379) < .0001 < .0001
					0.125 0.25 0.5 1	2
					0.125 0.25 0.5 1	2

Favors Crizotinib

PFS Outcomes for ALEX, ALTA-1L, eXALT3 and CROWN Trials at varying levels of data maturity

ALEX: Alectinib vs Crizotinib Enrollment: Aug 2014 – Jan 2016 Median duration of follow-up in experimental arm: 1st interim Alectinib Crizotinib 18.6 analys<u>is</u> (n=152) (n=151) NR 11.1 PFS (INV), months 0.47 (0.34-0.65) HR (95% CI) 25.7 PFS (IRC), months 10.4 0.50 (0.36-0.70) HR (95% CI) 2nd interim Alectinib Crizotinib 27.8 (n=152) analysis (n=151) PFS (INV), months 34.8 10.9 mo 0.43 (0.32-0.58) HR (95% CI) PFS (IRC), months HR (95% CI) Crizotinib **Alectinib** 37.8 **Final Analysis** (n=152)(n=151) mo PFS (INV), months 34.8 10.9 HR (95% CI) 0.43 (0.32-0.58) PFS (IRC), months HR (95% CI) PFS (INV) rate 46.4 13.5

amatanty						
	ALTA-1L: Brigatinib vs Crizotinib Enrollment: Apr 2016 – Aug 2017					
Median duration of follow-up in experimental arm:						
11.0	1 st interim analysis	Brigatinib (n=137)	Crizotinib (n=138)			
mo	PFS (INV), months	NR	9.2			
	HR (95% CI)	0.45 (0.3	30-0.68)			
	PFS (IRC), months	NR	9.8			
	HR (95% CI)	0.49 (0.3	3-0.74)			
24.9	2 nd interim analysis	Brigatinib (n=137)	Crizotinib (n=138)			
mo	PFS (INV), months	29.4	9.2			
	HR (95% CI)	0.43 (0.3	31-0.61)			
	PFS (IRC), months	24.0	11.0			
	HR (95% CI)	0.49 (0.	35-0.68)			
40.4 mo	Final Analysis	Brigatinib (n=137)	Crizotinib (n=138)			
	PFS (INV), months	30.8	9.2			
	HR (95% CI)	0.43 (0.3	31-0.58)			
	PFS (IRC), months	24.0	11.1			
	HR (95% CI)	0.44 (0.	35-0.66)			
	PFS (IRC) rate at 36 months % (95% CI)	43.0 (34.0–51.0)	19.0 (12.0– 27.0)			

eXALT3: Ensartinib vs Crizotinib Enrollment: ? – Nov 2018 Median duration of follow-up in experimental arm:						
23.8 Interim Ensartinib Crizotinib (n=143) (n=147)						
mo	PFS (INV), months	-	-			
	HR (95% CI)					
	PFS (IRC), months	25.8	12.7			
	HR (95% CI)	0.51 (0.3	35-0.72)			
27.6 mo	2 nd interim analysis	Ensartinib (n=143)	Crizotinib (n=147)			
1110	PFS (INV), months	33.2	12.9			
	HR (95% CI)	0.45 (0.3	32-0.64)			
	PFS (IRC), months	31.3	12.7			
HR (95% CI) 0.50 (0.36-0.71)						
		•	,			

JAMA Oncol 2021 Horn et al World Lung 2020b Wu et al **CROWN:** Lorlatinib vs Crizotinib Enrollment: Apr 2017 – Feb 2019

Median duration of follow-up in experimental arm:

18.3

mo

3	1 st Interim analysis	Lorlatinib (n=147)	Crizotinib (n=149)	
	PFS (INV), months	NE	9.1	
	HR (95% CI)	0.21 (0.14, 0.31)		
	PFS (IRC), months	NE	9.3	
	HR (95% CI)	0.28 (0.19, 0.41)		

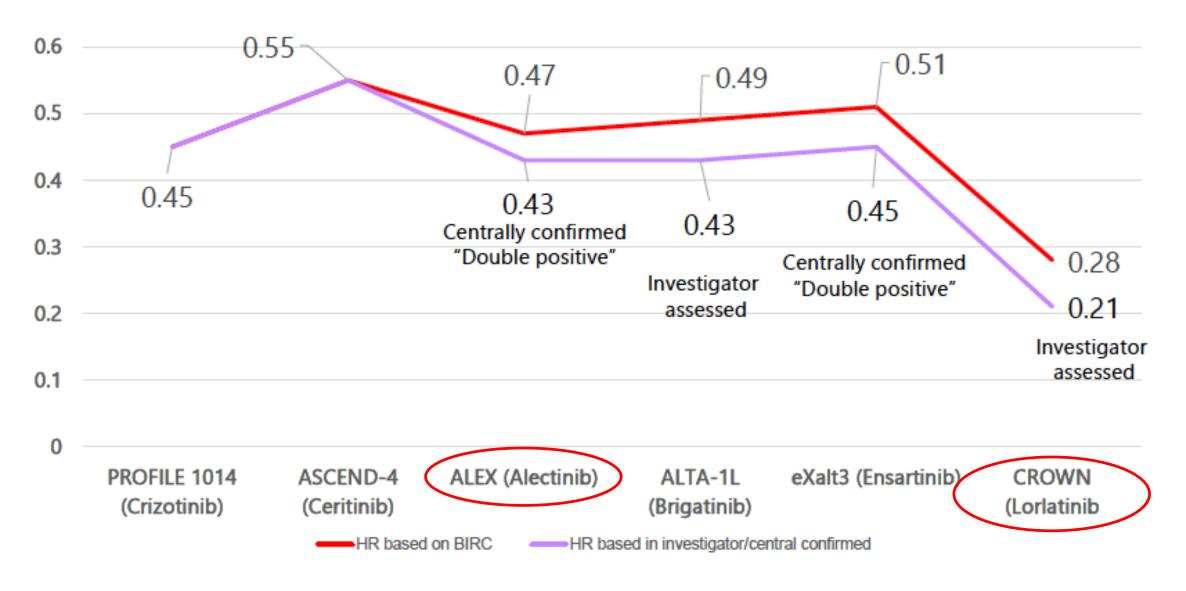
6 0	2 nd Interim analysis	Lorlatinib (n=147)	Crizotinib (n=149)
U	PFS (INV), months	NE	9.1
	HR (95% CI)	0.21 (0.	.14, 0.31)
	PFS (IRC), months	NE	9.3
	HR (95% CI)	0.27 (0.	.18, 0.39)
	PFS (IRC) rate at 36 months % (95% CI)	63.5 (54.6–71.1)	18.9 (11.8– 27.4)

NEJM 2017 Peters et al JTO 2019 Camidge et al ESMO 2019 Mok et al

(CI not

available)

(CI not


available)

at 36 months %

NEJM 2018 Camidge et al JCO 2020 Camidge et al JTO 2021 Camidge et al

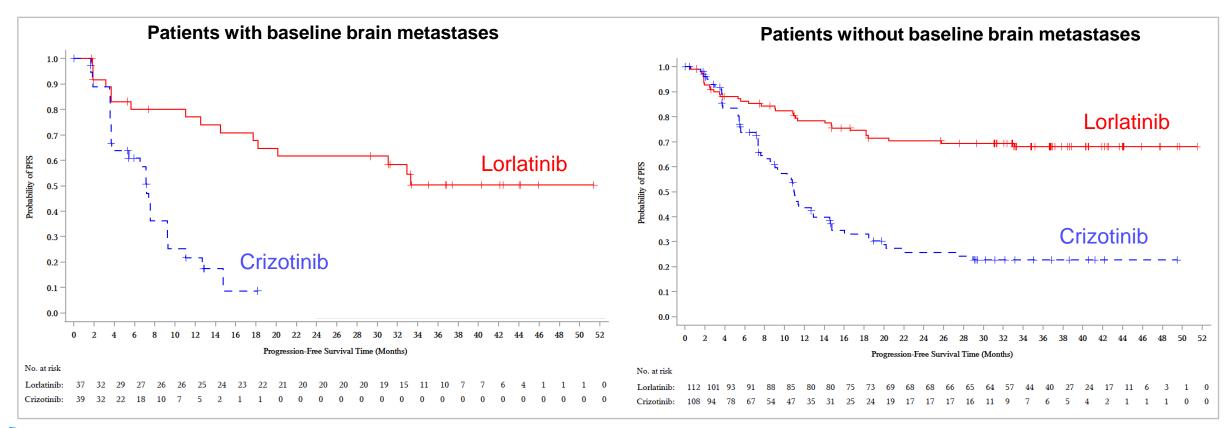
NEJM 2020 Shaw et al AACR 2022 Solomon et al

Hazard Ratio (BIRC and investigator-assessed/double positive)

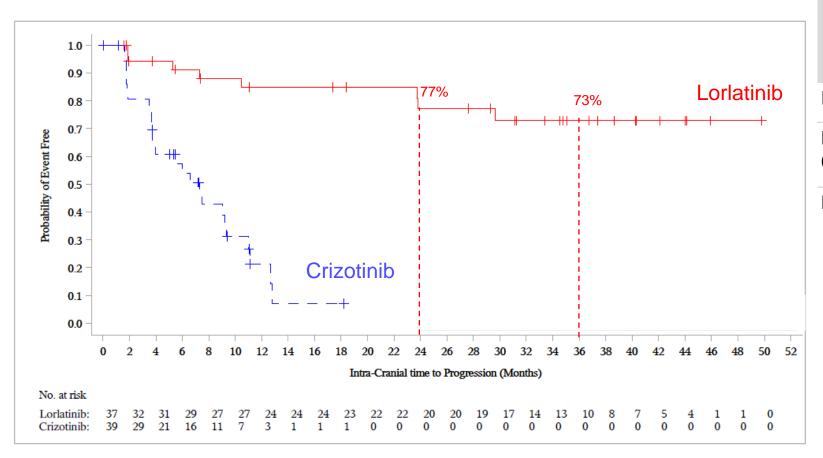
CROWN, ALTA-1L & ALEX: Summary of overall and intracranial response

	CRC	OWN
	Lorlatinib ¹	Crizotinib ¹
ITT population, n	149	147
Confirmed ORR, % patients	77.2	58.5
Complete response, % patients	2.7	0.0
Median DoR (95% CI), months	NR (NR-NR)	9.6 (9.0–12.9)
Patients with any brain metastases at baseline, n	37	39
Confirmed IC-ORR, % patients	64.9	17.9
Complete IC response, % patients	59.5	12.8
Median IC-DoR (95% CI), months	NR (NR-NR)	9.4 (6.0–11.1)
Patients with at least 1 measurable brain metastases at baseline, n	18	13
Confirmed IC-ORR, % patients	83.3	23.1
Complete IC response, % patients	72.2	7.7
Median DoR (95% CI), months	NR (NR-NR)	10.2 (9.4–11.1)

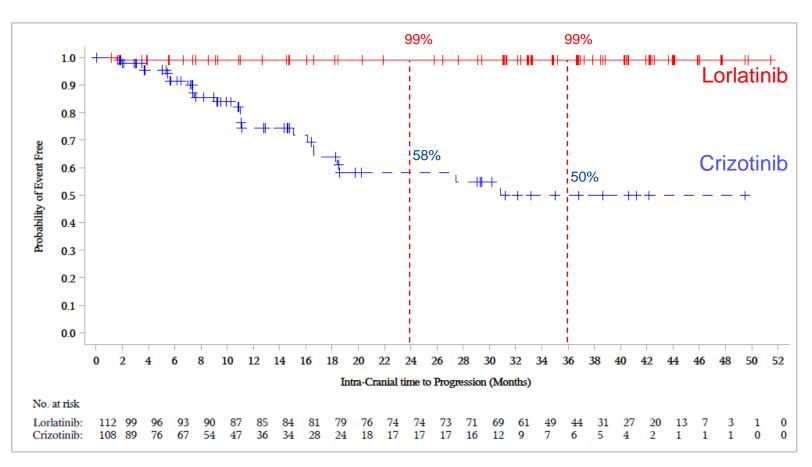
ALEX				
Alectinib ³	Crizotinib ³			
152	151			
82.9	75.5			
4	1			
NE	11.1 (7.9–13.0)			
64	58			
59	26			
45	9			
NE (17.3-NE)	3.7 (3.2–6.8)			
22	21			
81	50			
38	5			
5.5 (2.1–17.3)	17.3 (14.8–NE)			


Cross-trial comparisons have significant limitations. This information is presented in order to generate discussion, not to make direct comparisons between study results.

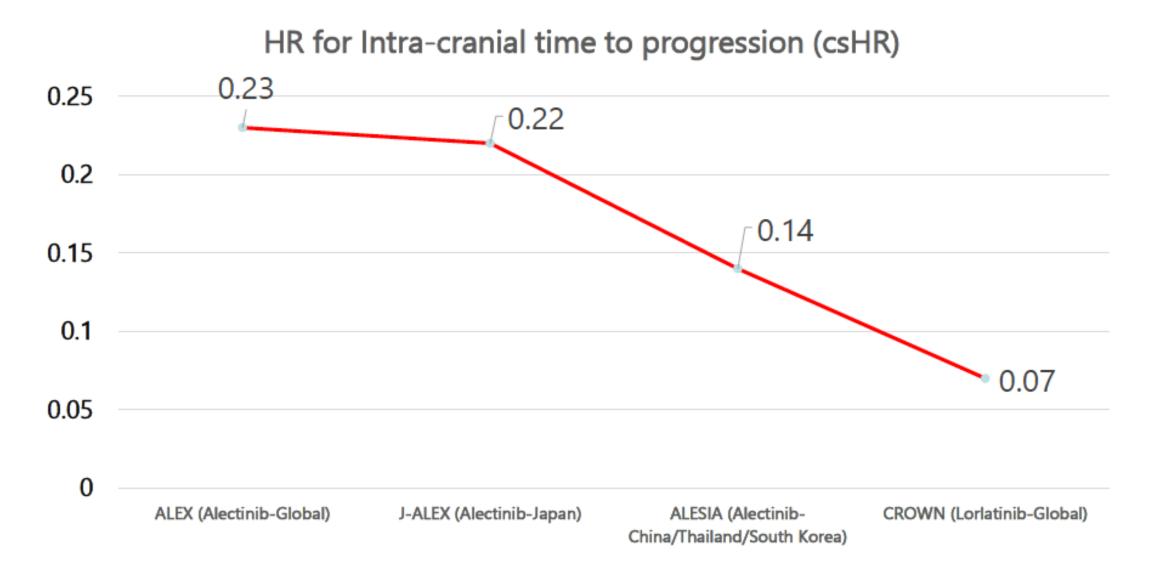
1. Pfizer data on file; 2. Camidge DR et al. *J Thor Onc* 2021;16: 2091–2108; 3. Peters S et al. *N Engl J Med* 2017;377:829–838; 4. Camidge DR et al. *J Thor Onc* 2021;16: 2091–2108 Supplementary


CROWN: BICR-assessed PFS in patients	
with and without brain metastases	

	With brain m	ietastases	Without brain metastases		
	Lorlatinib Crizotinib (n=37) (n=39)		Lorlatinib (n=112)	Crizotinib (n=108)	
Events	16	27	33	65	
Median PFS (95% CI), months	NR (18.2-NR)			11.0 (9.0–14.6)	
HR (95% CI)	0.21 (0.10-0.44)		0.29 (0.1	9-0.44)	

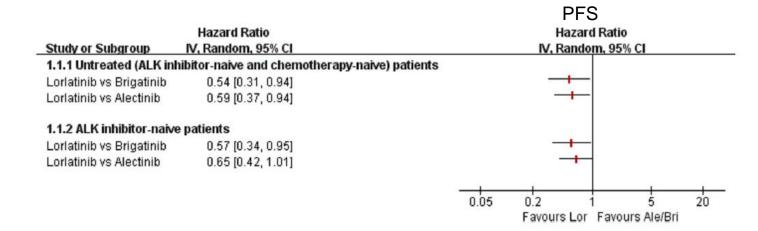

CROWN: BICR-assessed intracranial time to progression in patients with baseline brain metastases

	With brain metastases		
	Lorlatinib (n=37)	Crizotinib (n=39)	
Events	8	26	
Median PFS (95% CI), months	NR (NR–NR)	7.3 (3.7–9.3)	
HR (95% CI)	0.10 (0.04–0.27)		


CROWN: BICR-assessed intracranial time to progression in patients without baseline brain metastases

	Without brain metastases			
	Lorlatinib (n=112)	Crizotinib (n=108)		
Events	1	25		
Median PFS (95% CI), months	NR (NR–NR)	30.8 (18.4–NR)		
HR (95% CI)	0.02 (0.002–0.14)			

Who wins in the CNS, wins the game! Or ??


Comparison of Iorlatinib, alectinib and brigatinib in ALK inhibitor—naive/untreated ALK-positive advanced non-small-cell lung

cancer: a systematic review and network meta-analysis

Table 1. The characteristics of included RCTs.

Study		N	Regimen	Cohort	Primary endpoint
ALTA-1L	Е	58	Brigatinib	ALK inhibitor (-): Untreated (74%)	PFS
	C	60	Crizotinib	ALK inhibitor (-): Untreated (73%)	
ALEX	Ε	152	Alectinib	Untreated	PFS
	C	151	Crizotinib		
CROWN	Ε	149	Lorlatinib	Untreated	PFS
	C	147	Crizotinib		
ALESIA	Ε	125	Alectinib	Untreated	PFS
	C	62	Crizotinib		
J-ALEX	E	103	Alectinib	ALK inhibitor (-): Untreated (64%)	PFS
	С	104	Crizotinib	ALK inhibitor (-): Untreated (63%)	

Abbreviation: E, experiment arm; C, control arm; PFS, progression free survival.

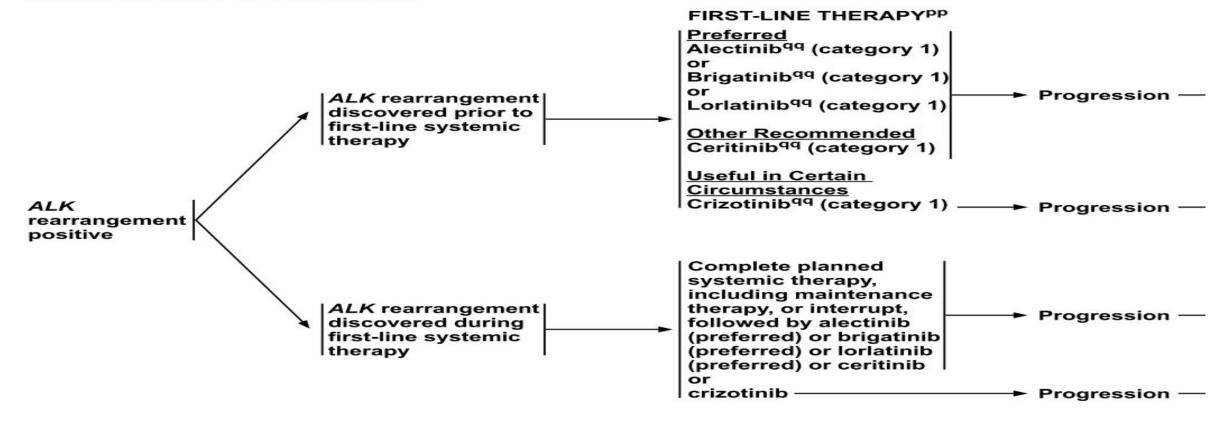
In conclusion, in terms of **PFS**, our results indicated that **lorlatinib was the best treatment choice for patients with ALK inhibitor-naive or untreated** (ALK

inhibitor-naive and chemotherapy-naive) ALK-positive 30

ESMO Clinical Practice Guidelines Stage IV ALK + NSCLC

Factors affecting drug choice Disease

- Line of therapy/disease pattern
- CNS metastases
- Molecular profile if available


Patient

- Tolerance/toxicity including financial
- Co-morbidity and concomitant meds

^aESMO-MCBS v1.1 score for new therapy/indication approved by the PMA since Pirtuary 16 for Cens to references calculated by the ESMO-MCBS Working Group and validated by the ESMO Guidelines Committee; ^bPreferred option; ^cNot EMA-approved.

Comprehensive NCCN Guidelines Version 3.2022 Non-Small Cell Lung Cancer

ALK REARRANGEMENT POSITIVE mm

mm Principles of Molecular and Biomarker Analysis (NSCL-H).

PP Targeted Therapy or Immunotherapy for Advanced or Metastatic Disease (NSCL-J).

qq For performance status 0-4.

Note: All recommendations are category 2A unless otherwise indicated.

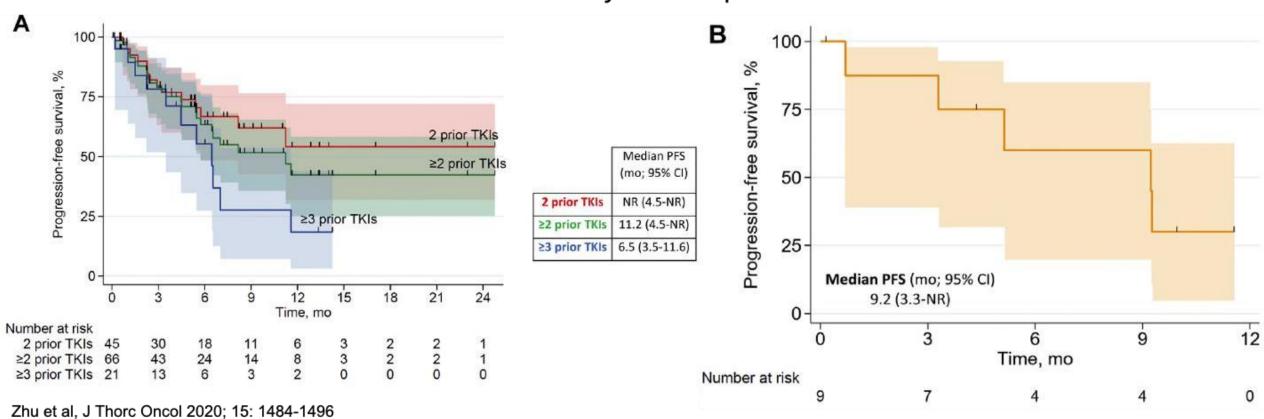
Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially enco

Summary of principal AEs observed during phase III trials in the first-line ALK-positive NSCLC setting

• With increasing ALK TKIs available, each with their own individual tolerability profiles, there is a need to optimise and understand therapy management to ensure time on treatment is maximised for patients¹

	ALEX ^{2,3} Alectinib (n=152)	ALTA-1L ^{†4} Brigatinib (n=136)	Exalt3 ^{‡§5} Ensartinib (n=143)	CROWN ^{¶6,7} Lorlatinib (n=149)
	Constipation (36)*	Diarrhoea (52)	Rash (68)	Hypercholesterolaemia†(70)
	Anaemia (22)*	Increased blood CPK (46)	ALT increased (51)	Hypertriglyceridaemia†(64)
	Fatigue (20)*	Cough (35)	AST increased (37)	Oedema† (55)
Most common all Grade AEs in each treatment arm (%)	Blood bilirubin increased (19)*	Hypertension (32)	Constipation (32)	Weight increased (38)
	Peripheral oedema (18)*	Nausea (30)	Cough (31)	Peripheral neuropathy†(34)
	ALT increased (17)*	AST level increased (26)	Pruritus (29)	Cognitive effects ^{†‡} (21)
	Myalgia (16)*	Increased lipase (23)	Nausea (27)	Diarrhoea (21)
	AST increased (16)*	ALT level increased (21)	Oedema (25)	Dyspnoea (20)
Dose reduction due to AEs, n (%)	29 (19)**	52 (38)	34 (24)	31 (21)
Dose interruption due to AEs, n (%)	38 (25)**	90 (66)	Not reported	73 (49)
L∕iscontinuation que to A⊑s, n (%) Please note, data are	21 (14)*** from unrelated studies, with diffe	17 (13) rent study designs and inclusio	13(9) on criteria. Therefore, cross trial	10 (/) comparisons should not be
made.			·	

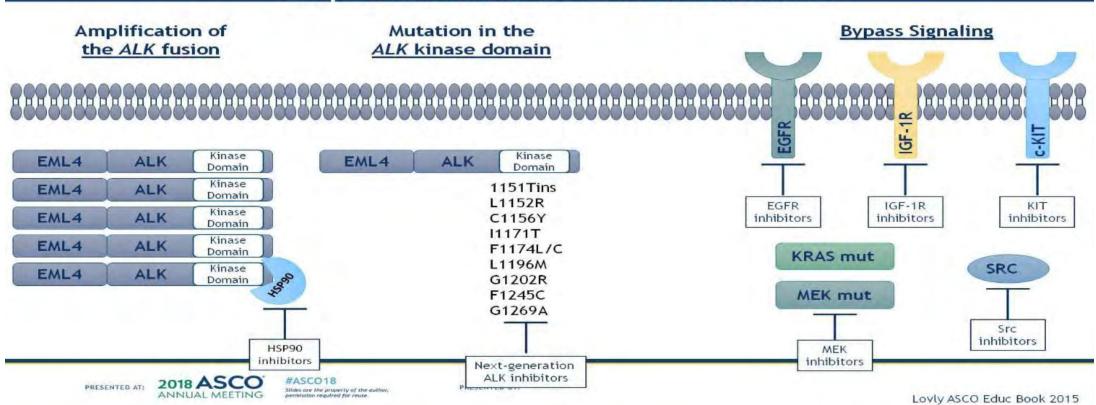
^{*}Based on a data cut-off of 1 December 2017; **Based on data cut-off of 30 November 2018; †Based on a data cut-off of 28 June 2019 (second interim analysis); ‡Exact data were not reported; §Based on a data cut-off of 01 July 2020; ¶Based on cut-off of 20 March 2020 (planned interim analysis).

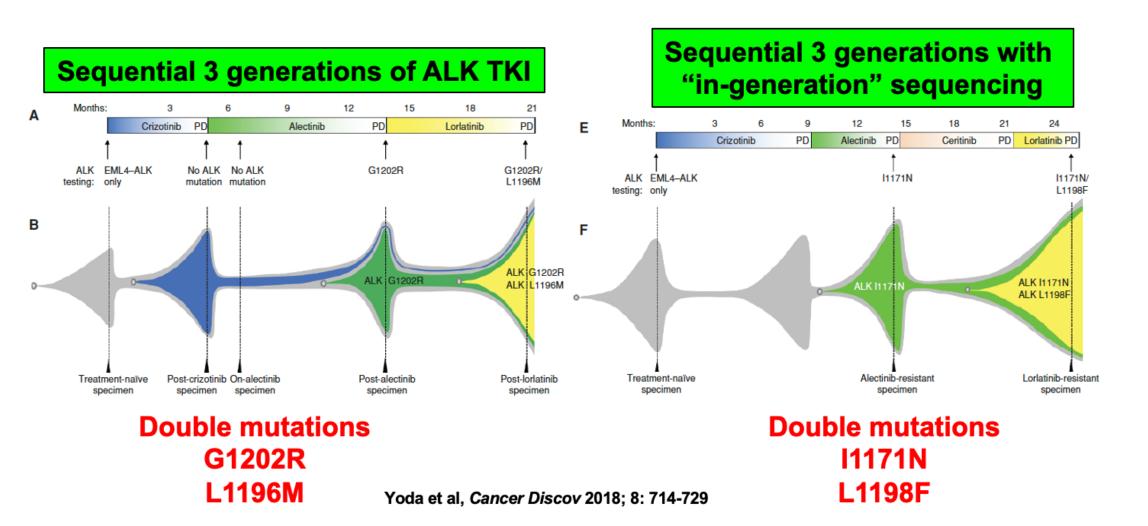

AE, adverse event; ALK, anaplastic lymphoma kinase; ALT, alanine aminotransferase; ALP, alkaline phosphatase; AST, aspartate

amino transferase; CPK, creatine phosphokinase; NSCLC, non-small cell lung carcinoma; TKI, tyrosine kinase inhibitor.

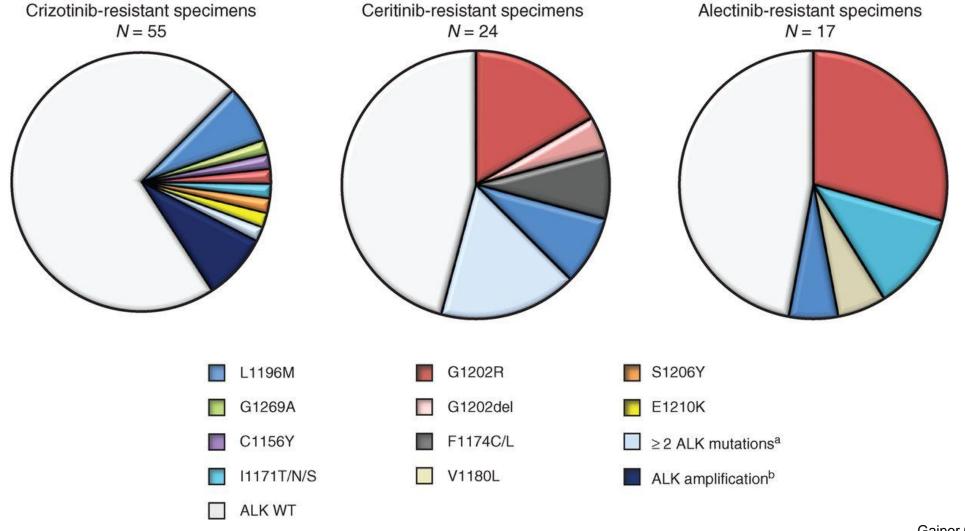
^{1.} Blackhall F, et al. Presented at ESMO Lung Preceptorship 2020, 19–21 October 2020; 2. Camidge DR, et al. J Thorac Oncol. 2019;14(7):1233–43. Supplementary appendix; 3. Mok T, et al. 1484PD. Presented at ESMO Virtual Congress 2020, 19–21 September 2020; 4. EMA Assessment Report: Alunbrig® (brigatinib). www.ema.eu/en/documents/variation- report/alunbrig-h-c-4248-ii-0003-epar-assessment-report-variation_en.pdf (Accessed 03 November 2020); 5. Horn L, et al. Presented at WCLC 2020 Presidential Symposium 2020, 08 August 2020 at. IS Frank | All English 2020 at 2020 | Shape 2020 | Sh

Diminishing PFS with more prior lines of ALK TKIs


Lorlatinib PFS in by lines of prior ALK TKIs


What after Lorlatinib- is it a concern??

CAUTION! WE KNOW VERY LITTLE OF RESISTANCE MECHANISMS TO LORLATINIB!


Mechanisms and potential strategies to overcome acquired resistance to ALK inhibition

The more generations of ALK TKI are sequenced the more "monster" ALK resistance mutations appeared

Resistance to 2nd-Gen ALK TKIs is Largely Driven by Secondary ALK Kinase Domain Mutations, Particularly G1202R

Lorlatinib is a potent 3rd-generation ALK TKI with broad-spectrum activity against ALK resistance mutations

IC₅₀ ≤50 nM

Secondary mutations in the ALK kinase domain can induce resistance to first- and second-gen

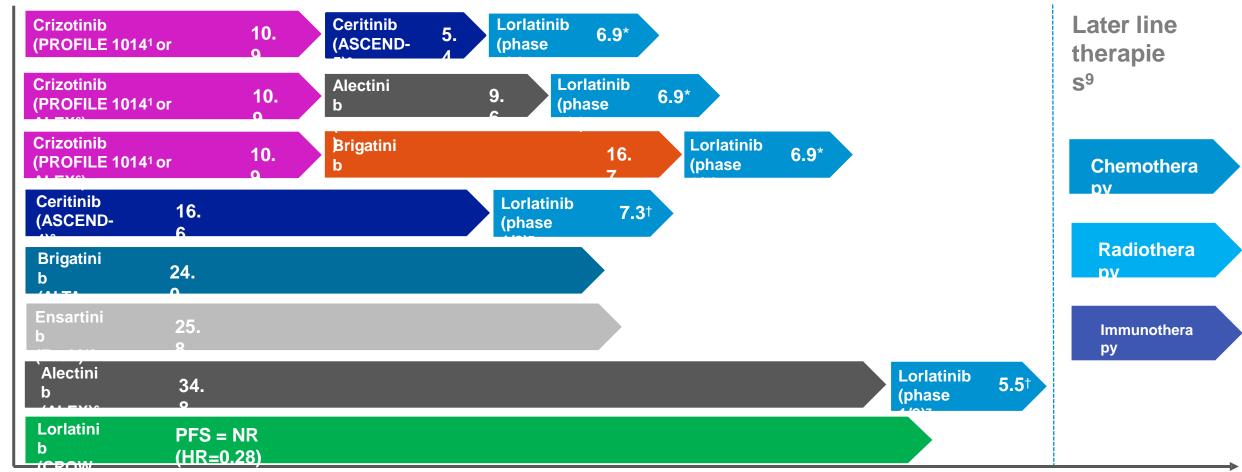
ALK TKIS

ALK G1202R confers resistance to the available first- and second-gen ALK TKIs

Lorlatinib has broad-spectrum activity against most known ALK resistance mutations including ALK G1202R

ALK, anaplastic lymphoma kinase; IC₅₀, half-maximal inhibitory concentration; ND, not done; ROS1, c-ros oncogene 1; TKI, tyrosine kinase inhibitor.

1050 = 00 1111						
Cellular ALK Phosphorylation Mean IC ₅₀ (nM)						
Mutation Status	Crizotinib	Ceritinib	Alectinib	Brigatinib	Lorlatinib	
Parental BA/F3	763.9	885.7	890.1	2774.0	11293.8	
V1	38.6	4.9	11.4	10.7	2.3	
C1156Y	61.9	5.3	11.6	4.5	4.6	
I1171N	130.1	8.2	397.7	26.1	49.0	
I1171S	94.1	3.8	177.0	17.8	30.4	
I1171T	51.4	1.7	33.6	6.1	11.5	
F1174C	115.0	38.0	27.0	18.0	8.0	
L1196M	339.0	9.3	117.6	26.5	34.0	
L1198F	0.4	196.2	42.3	13.9	14.8	
G1202R	381.6	124.4	706.6	129.5	49.9	
G1202del	58.4	50.1	58.8	95.8	5.2	
D1203N	116.3	35.3	27.9	34.6	11.1	
E1210K	42.8	5.8	31.6	24.0	1.7	
G1269A	117.0	0.4	25.0	ND	10.0	


IC₅₀ >50-<200 nM

IC₅₀ ≥200 nM

^{1.} Gainor JF, et al. Cancer Discov. 2016;6:1118–1133.

^{2.} Johnson TW, et al. J Med Chem. 2014;57:4720-4744.

The rapidly evolving ALK+ NSCLC landscape and growing body of clinical evidence is defining a treatment sequence for patients

Median PFS (months)‡

*Data are from the EXP4 and EXP5 groups (two or three prior ALK TKIs ± chemotherapy); †Lorlatinib PFS data following ceritinib or alectinib in any line; ‡Adapted and updated from Ferrera, et al. 20189. For illustration purposes only; note that cross-trial comparisons should be interpreted with caution due to the differences in study design, size, patient population and data maturity; the IMpower150 regimen is not currently approved in the US

Solomon, et al. N Eng J Med 2014; 2. Shaw, et al. Lancet Oncol 2017; 3. Novello, et al. Ann Oncol 2018; 4. Huber, et al. ASCO 2018; 5. Soria, et al. Lancet Oncol 2017; 6. Camidge, et al. J Thorac Oncol 2019; 7. Besse, et al. ASCO 2018; 8. Camidge, et al. N Engl J Med 2018; 9. Ferrara, et al. J Thorac Oncol 2018; 10. Horn L. WCLC2020 Presidentialsession

Summary

 There are now multiple 1L treatment options in advanced ALK+ lung cancer.

 Next-generation ALK TKIs(alectinib/lorlatinib) are the standard-of-care for frontline management of advanced ALK+ lung cancer.

KISS

 Every Time When I Make PPTs, I get this message from my wife But she actually means

Keep ... It...Short...Stupid

THANKS